EGON-RS **Absolute encoder RS**

Digital absolute encoder featuring magnetic technology and suitable for reading and transmitting the shaft position to an external system via the RS-485 differential Half-Duplex output. It is used in a variety of industrial sectors, from automation to industrial handling machines and intralogistics.

FEATURES

- Egon-RS is a magnetic multiturn encoder, suitable for counting the shaft revolutions, working even without power supply through a battery backup, active when the encoder reads a shaft revolution.
- Compact and flexible, it is designed for easy assembly and wiring together with standard sets of cams.
- · Very low power consumption guarantees highest efficiency.
- Single turn measuring resolution guaranteed by 1024 points per revolution (10 bit version) or by 4096 points per revolution (12 bit version).
- IP protection degree: Egon-RS is classified IP65, IP67 and IP69K (pending).
- Extreme temperature resistance: from -53°C to +80°C.
- Featuring technopolymer housing and stainless steel AISI 303 shaft.
- · High quality materials and components guarantee long mechanical life, precision and repeat accuracy even in extreme conditions.

OPTIONS

- Suitable for installation on Fox, Oscar and Top rotary limit switches to control multi-revolutions rotors.
- · Available in configurations with shaft or with contactless magnet and bush.
- Featuring sturdy RS-485 differential Half-Duplex output suitable for transmitting through native protocol.
- · Featuring protection against input over-current and against over-voltage and reverse polarity.
- · Available with clamping flange, interface female connector and adapter coupling (Ø 6-6, Ø 6-8, Ø 6-10).

CERTIFICATIONS

· CE marking.

Fill in the "request form" to configure properly the product.

CERTIFICATIONS

Conformity to Community Directives	2014/35/UE Low Voltage Directive (LVD) 2006/42/CE Machinery Directive
Conformity to CE Standards	EN 60204-1 Safety of machinery - Electrical equipment of machines EN 60947-1 Low-voltage switchgear and controlgear
	EN 60947-5-1 Low-voltage switchgear and controlgear - Control circuit devices and switching elements - Electromechanical control circuit devices
	EN 60529 Degrees of protection provided by enclosures
Markings and homologations	(€

GENERAL TECHNICAL SPECIFICATIONS

Ambient temperature	Storage -53°C/+80°C		
	Operational -53°C/+80°C		
IP protection degree	IP65, IP67, IP69K (pending)		
Rated rotation speed	800 rev./min		
Maximum rotation speed	1500 rev./min		
Mechanical life	Egon-RS with shaft > 30x10° revolutions		
	Egon-RS contactless ∞		
Shaft diameter	6 mm		
Connections	Male connector M8 4 PIN		
	Cable		
	Cable with male connector M12 5 PIN		

ELECTRICAL SPECIFICATIONS

Power supply	9 36 Vdc
Output	Differential Half-Duplex RS-485 suitable for transmission through native protocol
Consumption	~20mA
Single-turn resolution	10 bit (1024 points per revolution)
	12 bit (4096 points per revolution)
Multi-turn resolution	14 bit (16384 revolutions)
	16 bit (65535 revolutions)
Back-up time	~5 years non-stop
Protection against input over-current	Yes
Protection against over-voltage and reverse polarity	Yes
Accuracy	+/- 0.35°

MALE CONNECTOR SPECIFICATIONS

Number of PINs	4	5 (Code A)	
Insulation resistance	≥100 MΩ		
Wires	4.5 - 6.5 mm		
Contacts	CuZn gold plated		
Mating	M8 4 PIN female connectors (Amphenol 8P-04AFFM-SL7A01)	M12 5 PIN Code A female connectors (Amphenol LTW12-05BFFA-SL8001)	

MALE CONNECTOR ASSIGNMENT

4 PIN connector

Male connector (front view)

PIN Signal 1 12 - 30 Vdc 2 RS-485 B 3 RS-485 A 4 GND

5 PIN connector (with cable)

Male connector (front view)

PIN	Signal
1	12 - 30 Vdc
2	RS-485 B
3	RS-485 A
4	GND
5	/

OVERALL DIMENSIONS (mm)

With shaft

With shaft and flange

Ø54

Contactless version with flange

SECTION A-A

EGON-RS - REQUEST FORM FOR ABSOLUTE ENCODER RS

Version	Flange
With shaft Ø6 mm	
Contactless	Adapter coupling
	☐ø 6-6
Connections	Ø 6-8
Male connector 4 PIN	
Cable	
Cabe with male connector 5 PIN	Instructions - Tick the box corresponding to the version required.
Cable length	- Tick the box corresponding to connection reuired. When the «cable» or «cable with connector» is required, write the length of the cable (in meters)
meters	ATTENTION: The length must be an integer number. - Tick the box if the flange is required. - Tick the preferred box if the adapter coupling is required.
Remarks	
-	

REMARKS

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
ER	
	—
6	

